mirror of
https://github.com/veekun/pokedex.git
synced 2024-08-20 18:16:34 +00:00
Start work on a moveset checker
This commit is contained in:
parent
b4f29e83d8
commit
bca84867c8
3 changed files with 627 additions and 0 deletions
299
pokedex/util/astar.py
Normal file
299
pokedex/util/astar.py
Normal file
|
@ -0,0 +1,299 @@
|
|||
"""A pure-Python implementation of the A* search algorithm
|
||||
"""
|
||||
|
||||
import heapq
|
||||
|
||||
class Node(object):
|
||||
"""Node for the A* search algorithm.
|
||||
|
||||
To get started, implement the `expand` method and call `search`.
|
||||
|
||||
N.B. Node object must be hashable.
|
||||
"""
|
||||
|
||||
def expand(self):
|
||||
"""Return a list of (costs, transition, next_node) for next states
|
||||
|
||||
"Next states" are those reachable from this node.
|
||||
|
||||
May return any finite iterable.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def estimate(self, goal):
|
||||
"""Return an *optimistic* estimate of the cost to the given goal node.
|
||||
|
||||
If there are multiple goal states, return the lowest estimate among all
|
||||
of them.
|
||||
"""
|
||||
return 0
|
||||
|
||||
def is_goal(self, goal):
|
||||
"""Return true iff this is a goal node.
|
||||
"""
|
||||
return self == goal
|
||||
|
||||
def find_path(self, goal=None, **kwargs):
|
||||
"""Return the best path to the goal
|
||||
|
||||
Returns an iterator of (cost, transition, node) triples, in reverse
|
||||
order (i.e. the first element will have the total cost and goal node).
|
||||
|
||||
If `goal` will be passed to the `estimate` and `is_goal` methods.
|
||||
|
||||
See a_star for the advanced keyword arguments, `notify` and
|
||||
`estimate_error_callback`.
|
||||
"""
|
||||
paths = self.find_all_paths(goal=goal, **kwargs)
|
||||
try:
|
||||
return paths.next()
|
||||
except StopIteration:
|
||||
return None
|
||||
|
||||
def find_all_paths(self, goal=None, **kwargs):
|
||||
"""Yield the best path to each goal
|
||||
|
||||
Returns an iterator of paths. See the `search` method for how paths
|
||||
look.
|
||||
|
||||
Giving the `goal` argument will cause it to search for that goal,
|
||||
instead of consulting the `is_goal` method.
|
||||
This means that if you wish to find more than one path, you must not
|
||||
pass a `goal` to this method, and instead reimplament `is_goal`.
|
||||
|
||||
See a_star for the advanced keyword arguments, `notify` and
|
||||
`estimate_error_callback`.
|
||||
"""
|
||||
return a_star(
|
||||
initial=self,
|
||||
expand=lambda s: s.expand(),
|
||||
estimate=lambda s: s.estimate(goal),
|
||||
is_goal=lambda s: s.is_goal(goal),
|
||||
**kwargs)
|
||||
|
||||
### The main algorithm
|
||||
|
||||
def a_star(initial, expand, is_goal, estimate=lambda x: 0, notify=None,
|
||||
estimate_error_callback=None):
|
||||
"""A* search algorithm for a consistent heuristic
|
||||
|
||||
General background: http://en.wikipedia.org/wiki/A*_search_algorithm
|
||||
|
||||
This algorithm will work in large or infinite search spaces.
|
||||
|
||||
This version of the algorithm is modified for multiple possible goals:
|
||||
it does not end when it reaches a goal. Rather, it yields the best path
|
||||
for each goal.
|
||||
(Exhausting the iterator is of course not recommended for large search
|
||||
spaces.)
|
||||
|
||||
Returns an iterable of paths, where each path is an iterable of
|
||||
(cummulative cost, transition, node) triples representing the path to
|
||||
the goal. The transition is the one leading to the corresponding node.
|
||||
The path is in reverse order, thus its first element will contain the
|
||||
total cost and the goal node.
|
||||
The initial node is not included in the returned path.
|
||||
|
||||
Arguments:
|
||||
|
||||
`initial`: the initial node
|
||||
|
||||
`expand`: function yielding a (cost of transition, transition, next node)
|
||||
triple for each node reachable from its argument.
|
||||
The `transition` element is application data; it is not touched, only
|
||||
returned as part of the best path.
|
||||
`estimate`: function(x) returning optimistic estimate of cost from node x
|
||||
to a goal. If not given, 0 will be used for estimates.
|
||||
`is_goal`: function(x) returning true iff x is a goal node
|
||||
|
||||
`notify`: If given, if is called at each step with three arguments:
|
||||
- current cost (with estimate). The cost to the next goal will not be
|
||||
smaller than this.
|
||||
- current node
|
||||
- open set cardinality: roughly, an estimate of the size of the
|
||||
boundary between "explored" and "unexplored" parts of node space
|
||||
- debug: stats that be useful for debugging or tuning (in this
|
||||
implementation, this is the open heap size)
|
||||
The number of calls to notify or the current cost can be useful as
|
||||
stopping criteria; the other values may help in tuning estimators.
|
||||
|
||||
`estimate_error_callback`: function handling cases where an estimate was
|
||||
detected not to be optimistic (as A* requires). The function is given a
|
||||
path (as would be returned by a_star, except it does not lead to a goal
|
||||
node). By default, nothing is done (indeed, an estimate that's not
|
||||
strictly optimistic can be useful, esp. if the optimal path is not
|
||||
required)
|
||||
"""
|
||||
# g: best cummulative cost (from initial node) found so far
|
||||
# h: optimistic estimate of cost to goal
|
||||
# f: g + h
|
||||
closed = set() # nodes we don't want to visit again
|
||||
est = estimate(initial) # estimate total cost
|
||||
opened = _HeapDict() # node -> (f, g, h)
|
||||
opened[initial] = (est, 0, est)
|
||||
came_from = {initial: None} # node -> (prev_node, came_from[prev_node])
|
||||
while True: # _HeapDict will raise StopIteration for us
|
||||
x, (f, g, h) = opened.pop()
|
||||
closed.add(x)
|
||||
|
||||
if notify is not None:
|
||||
notify(f, x, len(opened.dict), len(opened.heap))
|
||||
|
||||
if is_goal(x):
|
||||
yield _trace_path(came_from[x])
|
||||
|
||||
for cost, transition, y in expand(x):
|
||||
if y in closed:
|
||||
continue
|
||||
tentative_g = g + cost
|
||||
|
||||
old_f, old_g, h = opened.get(y, (None, None, None))
|
||||
|
||||
if old_f is None:
|
||||
h = estimate(y)
|
||||
elif tentative_g > old_g:
|
||||
continue
|
||||
|
||||
came_from[y] = ((tentative_g, transition, y), came_from[x])
|
||||
new_f = tentative_g + h
|
||||
|
||||
opened[y] = new_f, tentative_g, h
|
||||
|
||||
if estimate_error_callback is not None and new_f < f:
|
||||
estimate_error_callback(_trace_path(came_from[y]))
|
||||
|
||||
def _trace_path(cdr):
|
||||
"""Backtrace an A* result"""
|
||||
# Convert a lispy list to a pythony iterator
|
||||
while cdr:
|
||||
car, cdr = cdr
|
||||
yield car
|
||||
|
||||
class _HeapDict(object):
|
||||
"""A custom parallel heap/dict structure -- the best of both worlds.
|
||||
|
||||
This is NOT a general-purpose class; it only supports what a_star needs.
|
||||
"""
|
||||
# The dict has the definitive contents
|
||||
# The heap has (value, key) pairs. It may have some extra elements.
|
||||
def __init__(self):
|
||||
self.dict = {}
|
||||
self.heap = []
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
self.dict[key] = value
|
||||
heapq.heappush(self.heap, (value, key))
|
||||
|
||||
def __delitem__(self, key):
|
||||
del self.dict[key]
|
||||
|
||||
def get(self, key, default):
|
||||
"""Return value for key, or default if not found
|
||||
"""
|
||||
return self.dict.get(key, default)
|
||||
|
||||
def pop(self):
|
||||
"""Return (key, value) with the smallest value.
|
||||
|
||||
Raise StopIteration (!!) if empty
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
value, key = heapq.heappop(self.heap)
|
||||
if value is self.dict[key]:
|
||||
del self.dict[key]
|
||||
return key, value
|
||||
except KeyError:
|
||||
# deleted from dict = not here
|
||||
pass
|
||||
except IndexError:
|
||||
# nothing more to pop
|
||||
raise StopIteration
|
||||
|
||||
|
||||
### Example/test
|
||||
|
||||
|
||||
def test_example_knights():
|
||||
"""Test/example: the "knights" problem
|
||||
|
||||
Definition and another solution may be found at:
|
||||
http://brandon.sternefamily.net/posts/2005/02/a-star-algorithm-in-python/
|
||||
"""
|
||||
# Legal moves
|
||||
moves = { 1: [4, 7],
|
||||
2: [8, 10],
|
||||
3: [9],
|
||||
4: [1, 6, 10],
|
||||
5: [7],
|
||||
6: [4],
|
||||
7: [1, 5],
|
||||
8: [2, 9],
|
||||
9: [8, 3],
|
||||
10: [2, 4] }
|
||||
|
||||
class Positions(dict, Node):
|
||||
"""Node class representing positions as a dictionary.
|
||||
|
||||
Keys are unique piece names, values are (color, position) where color
|
||||
is True for white, False for black.
|
||||
"""
|
||||
def expand(self):
|
||||
for piece, (color, position) in self.items():
|
||||
for new_position in moves[position]:
|
||||
if new_position not in (p for c, p in self.values()):
|
||||
new_node = Positions(self)
|
||||
new_node.update({piece: (color, new_position)})
|
||||
yield 1, None, new_node
|
||||
|
||||
def estimate(self, goal):
|
||||
# Number of misplaced figures
|
||||
misplaced = 0
|
||||
for piece, (color, position) in self.items():
|
||||
if (color, position) not in goal.values():
|
||||
misplaced += 1
|
||||
return misplaced
|
||||
|
||||
def is_goal(self, goal):
|
||||
return self.estimate(goal) == 0
|
||||
|
||||
def __hash__(self):
|
||||
return hash(tuple(sorted(self.items())))
|
||||
|
||||
initial = Positions({
|
||||
'White 1': (True, 1),
|
||||
'white 2': (True, 6),
|
||||
'Black 1': (False, 5),
|
||||
'black 2': (False, 7),
|
||||
})
|
||||
|
||||
# Goal: colors should be switched
|
||||
goal = Positions((piece, (not color, position))
|
||||
for piece, (color, position) in initial.items())
|
||||
|
||||
def print_board(positions, linebreak='\n', extra=''):
|
||||
board = dict((position, piece)
|
||||
for piece, (color, position) in positions.items())
|
||||
for i in range(1, 11):
|
||||
# line breaks
|
||||
if i in (2, 6, 9):
|
||||
print linebreak,
|
||||
print board.get(i, '_')[0],
|
||||
print extra
|
||||
|
||||
def notify(cost, state, b, c):
|
||||
print 'Looking at state with cost %s:' % cost,
|
||||
print_board(state, '|', '(%s; %s; %s)' % (state.estimate(goal), b, c))
|
||||
|
||||
solution_path = list(initial.search(goal, notify=notify))
|
||||
|
||||
print 'Step', 0
|
||||
print_board(initial)
|
||||
for i, (cost, transition, positions) in enumerate(reversed(solution_path)):
|
||||
print 'Step', i + 1
|
||||
print_board(positions)
|
||||
|
||||
# Check solution is correct
|
||||
cost, transition, positions = solution_path[0]
|
||||
assert set(positions.values()) == set(goal.values())
|
||||
assert cost == 40
|
327
pokedex/util/movesets.py
Executable file
327
pokedex/util/movesets.py
Executable file
|
@ -0,0 +1,327 @@
|
|||
#! /usr/bin/env python
|
||||
# Encoding: UTF-8
|
||||
|
||||
import sys
|
||||
import argparse
|
||||
from collections import defaultdict
|
||||
|
||||
from sqlalchemy.orm.exc import NoResultFound
|
||||
from sqlalchemy.sql.expression import not_, and_, or_
|
||||
|
||||
from pokedex.db import connect, tables, util
|
||||
|
||||
from pokedex.util import querytimer
|
||||
from pokedex.util.astar import a_star
|
||||
|
||||
class IllegalMoveCombination(ValueError): pass
|
||||
class TooManyMoves(IllegalMoveCombination): pass
|
||||
class NoMoves(IllegalMoveCombination): pass
|
||||
class MovesNotLearnable(IllegalMoveCombination): pass
|
||||
class NoParent(IllegalMoveCombination): pass
|
||||
class TargetExcluded(IllegalMoveCombination): pass
|
||||
|
||||
class MovesetSearch(object):
|
||||
def __init__(self, session, pokemon, version, moves, level=100, costs=None,
|
||||
exclude_versions=(), exclude_pokemon=(), debug=False):
|
||||
|
||||
self.generator = self.error = None
|
||||
|
||||
if not moves:
|
||||
self.error = NoMoves('No moves specified.')
|
||||
return
|
||||
elif len(moves) > 4:
|
||||
self.error = NoMoves('Too many moves specified.')
|
||||
return
|
||||
|
||||
self.debug = debug
|
||||
|
||||
self.session = session
|
||||
|
||||
if costs is None:
|
||||
self.costs = default_costs
|
||||
else:
|
||||
self.costs = costs
|
||||
|
||||
self.excluded_families = frozenset(p.evolution_chain_id
|
||||
for p in exclude_pokemon)
|
||||
|
||||
if pokemon:
|
||||
self.goal_evolution_chain = pokemon.evolution_chain_id
|
||||
if self.goal_evolution_chain in self.excluded_families:
|
||||
self.error = TargetExcluded('The target pokemon was excluded.')
|
||||
return
|
||||
else:
|
||||
self.goal_evolution_chain = None
|
||||
|
||||
if debug:
|
||||
print 'Specified moves:', [move.id for move in moves]
|
||||
|
||||
self.goal_moves = frozenset(move.id for move in moves)
|
||||
self.goal_version_group = version.version_group_id
|
||||
|
||||
# Fill self.generation_id_by_version_group
|
||||
self.load_version_groups(version.version_group_id,
|
||||
[v.version_group_id for v in exclude_versions])
|
||||
|
||||
self.pokemon_moves = defaultdict( # key: pokemon
|
||||
lambda: defaultdict( # key: move
|
||||
lambda: defaultdict( # key: version_group
|
||||
lambda: defaultdict( # key: method
|
||||
list)))) # list of (level, cost)
|
||||
self.movepools = defaultdict(dict) # evo chain -> move -> best cost
|
||||
self.learnpools = defaultdict(set) # as above, but not egg moves
|
||||
|
||||
easy_moves, non_egg_moves = self.load_pokemon_moves(
|
||||
self.goal_evolution_chain, 'family')
|
||||
|
||||
hard_moves = self.goal_moves - easy_moves
|
||||
egg_moves = self.goal_moves - non_egg_moves
|
||||
if hard_moves:
|
||||
# Have to breed!
|
||||
self.load_pokemon_moves(self.goal_evolution_chain, 'others')
|
||||
|
||||
def load_version_groups(self, version, excluded):
|
||||
query = self.session.query(tables.VersionGroup.id,
|
||||
tables.VersionGroup.generation_id)
|
||||
query = query.join(tables.Version.version_group)
|
||||
if excluded:
|
||||
query = query.filter(not_(tables.VersionGroup.id.in_(excluded)))
|
||||
self.generation_id_by_version_group = dict(query)
|
||||
def expand(v2):
|
||||
for v1 in self.generation_id_by_version_group:
|
||||
if self.trade_cost(v1, v2):
|
||||
yield 0, None, v1
|
||||
def is_goal(v):
|
||||
return True
|
||||
goal = self.goal_version_group
|
||||
filtered_map = {goal: self.generation_id_by_version_group[goal]}
|
||||
for result in a_star(self.goal_version_group, expand, is_goal):
|
||||
for cost, transition, version in result:
|
||||
filtered_map[version] = (
|
||||
self.generation_id_by_version_group[version])
|
||||
self.generation_id_by_version_group = filtered_map
|
||||
if self.debug:
|
||||
print 'Excluded version groups:', excluded
|
||||
print 'Trade cost table:'
|
||||
print '%03s' % '',
|
||||
for g1 in sorted(self.generation_id_by_version_group):
|
||||
print '%03s' % g1,
|
||||
print
|
||||
for g1 in sorted(self.generation_id_by_version_group):
|
||||
print '%03s' % g1,
|
||||
for g2 in sorted(self.generation_id_by_version_group):
|
||||
print '%03s' % (self.trade_cost(g1, g2) or '---'),
|
||||
print
|
||||
|
||||
def load_pokemon_moves(self, evolution_chain, selection):
|
||||
"""Load pokemon_moves, movepools, learnpools
|
||||
|
||||
`selection`:
|
||||
'family' for loading only pokemon in evolution_chain
|
||||
'others' for loading only pokemon NOT in evolution_chain
|
||||
|
||||
Returns: (easy_moves, non_egg_moves)
|
||||
If `selection` == 'family':
|
||||
easy_moves is a set of moves that are easier to obtain than by
|
||||
breeding
|
||||
non_egg_moves is a set of moves that don't require breeding
|
||||
Otherwise, these are empty sets.
|
||||
"""
|
||||
if self.debug:
|
||||
print 'Loading moves, c%s %s' % (evolution_chain, selection)
|
||||
query = self.session.query(
|
||||
tables.PokemonMove.pokemon_id,
|
||||
tables.PokemonMove.move_id,
|
||||
tables.PokemonMove.version_group_id,
|
||||
tables.PokemonMoveMethod.identifier,
|
||||
tables.PokemonMove.level,
|
||||
tables.Pokemon.evolution_chain_id,
|
||||
)
|
||||
query = query.join(tables.PokemonMove.pokemon)
|
||||
query = query.filter(tables.PokemonMoveMethod.id ==
|
||||
tables.PokemonMove.pokemon_move_method_id)
|
||||
query = query.filter(tables.PokemonMove.version_group_id.in_(
|
||||
set(self.generation_id_by_version_group)))
|
||||
query = query.filter(or_(
|
||||
tables.PokemonMove.level > 100, # XXX: Chaff?
|
||||
tables.PokemonMove.move_id.in_(self.goal_moves),
|
||||
))
|
||||
if self.excluded_families:
|
||||
query = query.filter(not_(tables.Pokemon.evolution_chain_id.in_(
|
||||
self.excluded_families)))
|
||||
if evolution_chain:
|
||||
if selection == 'family':
|
||||
query = query.filter(tables.Pokemon.evolution_chain_id == (
|
||||
evolution_chain))
|
||||
elif selection == 'others':
|
||||
query = query.filter(tables.Pokemon.evolution_chain_id != (
|
||||
evolution_chain))
|
||||
query = query.order_by(tables.PokemonMove.level)
|
||||
easy_moves = set()
|
||||
non_egg_moves = set()
|
||||
for pokemon, move, vg, method, level, chain in query:
|
||||
if move in self.goal_moves:
|
||||
cost = self.learn_cost(method, vg)
|
||||
self.movepools[chain][move] = min(
|
||||
self.movepools[chain].get(move, cost), cost)
|
||||
if method != 'egg':
|
||||
self.learnpools[chain].add(move)
|
||||
non_egg_moves.add(move)
|
||||
if cost < self.costs['breed']:
|
||||
easy_moves.add(move)
|
||||
else:
|
||||
cost = 0
|
||||
self.pokemon_moves[pokemon][move][vg][method].append((level, cost))
|
||||
if self.debug and selection == 'family':
|
||||
print 'Easy moves:', sorted(easy_moves)
|
||||
print 'Non-egg moves:', sorted(non_egg_moves)
|
||||
return easy_moves, non_egg_moves
|
||||
|
||||
def learn_cost(self, method, version_group):
|
||||
"""Return cost of learning a move by method (identifier) in ver. group
|
||||
"""
|
||||
if method == 'level-up':
|
||||
return self.costs['level-up']
|
||||
gen = self.generation_id_by_version_group[version_group]
|
||||
if method == 'machine' and gen < 5:
|
||||
return self.costs['machine-once']
|
||||
elif method == 'tutor' and gen == 3:
|
||||
return self.costs['tutor-once']
|
||||
elif method == 'egg':
|
||||
return self.costs['breed']
|
||||
else:
|
||||
return self.costs[method]
|
||||
|
||||
def trade_cost(self, version_group_from, version_group_to, *thing_generations):
|
||||
"""Return cost of trading between versions, None if impossibble
|
||||
|
||||
`thing_generations` should be the generation IDs of the pokemon and
|
||||
moves being traded.
|
||||
"""
|
||||
# XXX: this ignores HM transfer restrictions
|
||||
gen_from = self.generation_id_by_version_group[version_group_from]
|
||||
gen_to = self.generation_id_by_version_group[version_group_to]
|
||||
if gen_from == gen_to:
|
||||
return self.costs['trade']
|
||||
elif any(gen > gen_to for gen in thing_generations):
|
||||
return None
|
||||
elif gen_from in (1, 2):
|
||||
if gen_to in (1, 2):
|
||||
return self.costs['trade']
|
||||
else:
|
||||
return None
|
||||
elif gen_to in (1, 2):
|
||||
return None
|
||||
elif gen_from > gen_to:
|
||||
return None
|
||||
elif gen_from < gen_to - 1:
|
||||
return None
|
||||
else:
|
||||
return self.costs['trade'] + self.costs['transfer']
|
||||
|
||||
default_costs = {
|
||||
# Costs for learning a move in verious ways
|
||||
'level-up': 20, # The normal way
|
||||
'machine': 40, # Machines are slightly inconvenient.
|
||||
'machine-once': 2000, # before gen. 5, TMs only work once. Avoid.
|
||||
'tutor': 60, # Tutors are slightly more inconvenient than TMs – can't carry them around
|
||||
'tutor-once': 2100, # gen III: tutors only work once (well except Emerald frontier ones)
|
||||
'sketch': 10, # Quite cheap. (Doesn't include learning Sketch itself)
|
||||
|
||||
# Gimmick moves – we need to use this method to learn the move anyway,
|
||||
# so make a big-ish dent in the score if missing
|
||||
'stadium-surfing-pikachu': 100,
|
||||
'light-ball-egg': 100, # …
|
||||
|
||||
# Ugh... I don't know?
|
||||
'colosseum-purification': 100,
|
||||
'xd-shadow': 100,
|
||||
'xd-purification': 100,
|
||||
'form-change': 100,
|
||||
|
||||
# Other actions.
|
||||
# Breeding should cost more than 3 times than a lv-up/machine/tutor move.
|
||||
'evolution': 100, # We have to do this anyway, usually.
|
||||
'evolution-delayed': 50, # *in addition* to evolution. Who wants to mash B on every level.
|
||||
'breed': 400, # Breeding's a pain.
|
||||
'trade': 200, # Trading's a pain, but not as much as breeding.
|
||||
'transfer': 200, # *in addition* to trade. For one-way cross-generation transfers
|
||||
'delete': 300, # Deleting a move. (Not needed unless deleting an evolution move.)
|
||||
'relearn': 150, # Also a pain, though not as big as breeding.
|
||||
'per-level': 1, # Prefer less grinding. This is for all lv-ups but the final “grow”
|
||||
}
|
||||
|
||||
def main(argv):
|
||||
parser = argparse.ArgumentParser(description=
|
||||
'Find out if the specified moveset is valid, and provide a suggestion '
|
||||
'on how to obtain it.')
|
||||
|
||||
parser.add_argument('pokemon', metavar='POKEMON', type=unicode,
|
||||
help='Pokemon to check the moveset for')
|
||||
|
||||
parser.add_argument('move', metavar='MOVE', type=unicode, nargs='*',
|
||||
help='Moves in the moveset')
|
||||
|
||||
parser.add_argument('-l', '--level', metavar='LV', type=int, default=100,
|
||||
help='Level of the pokemon')
|
||||
|
||||
parser.add_argument('-v', '--version', metavar='VER', type=unicode,
|
||||
default='black',
|
||||
help='Version to search in.')
|
||||
|
||||
parser.add_argument('-V', '--exclude-version', metavar='VER', type=unicode,
|
||||
action='append', default=[],
|
||||
help='Versions to exclude (along with their '
|
||||
'counterparts, if any, e.g. `black` will also exclude White).')
|
||||
|
||||
parser.add_argument('-P', '--exclude-pokemon', metavar='PKM', type=unicode,
|
||||
action='append', default=[],
|
||||
help='Pokemon to exclude (along with their families, e.g. `pichu` '
|
||||
'will also exclude Pikachu and Raichu).')
|
||||
|
||||
parser.add_argument('-d', '--debug', action='append_const', const=1,
|
||||
default=[],
|
||||
help='Output timing and debugging information (can be specified more '
|
||||
'than once).')
|
||||
|
||||
args = parser.parse_args(argv)
|
||||
args.debug = len(args.debug)
|
||||
|
||||
if args.debug:
|
||||
print 'Connecting'
|
||||
|
||||
session = connect(engine_args={'echo': args.debug > 1})
|
||||
|
||||
if args.debug:
|
||||
print 'Parsing arguments'
|
||||
|
||||
def _get_list(table, idents, name):
|
||||
result = []
|
||||
for ident in idents:
|
||||
try:
|
||||
result.append(util.get(session, table, identifier=ident))
|
||||
except NoResultFound:
|
||||
print>>sys.stderr, ('%s %s not found. Please use '
|
||||
'the identifier.' % (name, ident))
|
||||
return 2
|
||||
return result
|
||||
|
||||
pokemon = _get_list(tables.Pokemon, [args.pokemon], 'Pokemon')[0]
|
||||
moves = _get_list(tables.Move, args.move, 'Move')
|
||||
version = _get_list(tables.Version, [args.version], 'Version')[0]
|
||||
excl_versions = _get_list(tables.Version, args.exclude_version, 'Version')
|
||||
excl_pokemon = _get_list(tables.Pokemon, args.exclude_pokemon, 'Pokemon')
|
||||
|
||||
if args.debug:
|
||||
print 'Starting search'
|
||||
|
||||
search = MovesetSearch(session, pokemon, version, moves, args.level,
|
||||
exclude_versions=excl_versions, exclude_pokemon=excl_pokemon,
|
||||
debug=args.debug)
|
||||
|
||||
if search.error:
|
||||
print 'Error:', search.error
|
||||
return 1
|
||||
|
||||
if __name__ == '__main__':
|
||||
sys.exit(main(sys.argv[1:]))
|
1
setup.py
1
setup.py
|
@ -12,6 +12,7 @@ setup(
|
|||
'whoosh>=2.2.2',
|
||||
'markdown',
|
||||
'construct',
|
||||
'argparse',
|
||||
],
|
||||
|
||||
entry_points = {
|
||||
|
|
Loading…
Add table
Reference in a new issue