mirror of
https://github.com/veekun/pokedex.git
synced 2024-08-20 18:16:34 +00:00
Merge A* in. General improvements.
This commit is contained in:
parent
88b9a216c7
commit
b2e54ca1ea
2 changed files with 284 additions and 347 deletions
|
@ -1,299 +0,0 @@
|
|||
"""A pure-Python implementation of the A* search algorithm
|
||||
"""
|
||||
|
||||
import heapq
|
||||
|
||||
class Node(object):
|
||||
"""Node for the A* search algorithm.
|
||||
|
||||
To get started, implement the `expand` method and call `search`.
|
||||
|
||||
N.B. Node object must be hashable.
|
||||
"""
|
||||
|
||||
def expand(self):
|
||||
"""Return a list of (costs, transition, next_node) for next states
|
||||
|
||||
"Next states" are those reachable from this node.
|
||||
|
||||
May return any finite iterable.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def estimate(self, goal):
|
||||
"""Return an *optimistic* estimate of the cost to the given goal node.
|
||||
|
||||
If there are multiple goal states, return the lowest estimate among all
|
||||
of them.
|
||||
"""
|
||||
return 0
|
||||
|
||||
def is_goal(self, goal):
|
||||
"""Return true iff this is a goal node.
|
||||
"""
|
||||
return self == goal
|
||||
|
||||
def find_path(self, goal=None, **kwargs):
|
||||
"""Return the best path to the goal
|
||||
|
||||
Returns an iterator of (cost, transition, node) triples, in reverse
|
||||
order (i.e. the first element will have the total cost and goal node).
|
||||
|
||||
If `goal` will be passed to the `estimate` and `is_goal` methods.
|
||||
|
||||
See a_star for the advanced keyword arguments, `notify` and
|
||||
`estimate_error_callback`.
|
||||
"""
|
||||
paths = self.find_all_paths(goal=goal, **kwargs)
|
||||
try:
|
||||
return paths.next()
|
||||
except StopIteration:
|
||||
return None
|
||||
|
||||
def find_all_paths(self, goal=None, **kwargs):
|
||||
"""Yield the best path to each goal
|
||||
|
||||
Returns an iterator of paths. See the `search` method for how paths
|
||||
look.
|
||||
|
||||
Giving the `goal` argument will cause it to search for that goal,
|
||||
instead of consulting the `is_goal` method.
|
||||
This means that if you wish to find more than one path, you must not
|
||||
pass a `goal` to this method, and instead reimplament `is_goal`.
|
||||
|
||||
See a_star for the advanced keyword arguments, `notify` and
|
||||
`estimate_error_callback`.
|
||||
"""
|
||||
return a_star(
|
||||
initial=self,
|
||||
expand=lambda s: s.expand(),
|
||||
estimate=lambda s: s.estimate(goal),
|
||||
is_goal=lambda s: s.is_goal(goal),
|
||||
**kwargs)
|
||||
|
||||
### The main algorithm
|
||||
|
||||
def a_star(initial, expand, is_goal, estimate=lambda x: 0, notify=None,
|
||||
estimate_error_callback=None):
|
||||
"""A* search algorithm for a consistent heuristic
|
||||
|
||||
General background: http://en.wikipedia.org/wiki/A*_search_algorithm
|
||||
|
||||
This algorithm will work in large or infinite search spaces.
|
||||
|
||||
This version of the algorithm is modified for multiple possible goals:
|
||||
it does not end when it reaches a goal. Rather, it yields the best path
|
||||
for each goal.
|
||||
(Exhausting the iterator is of course not recommended for large search
|
||||
spaces.)
|
||||
|
||||
Returns an iterable of paths, where each path is an iterable of
|
||||
(cummulative cost, transition, node) triples representing the path to
|
||||
the goal. The transition is the one leading to the corresponding node.
|
||||
The path is in reverse order, thus its first element will contain the
|
||||
total cost and the goal node.
|
||||
The initial node is not included in the returned path.
|
||||
|
||||
Arguments:
|
||||
|
||||
`initial`: the initial node
|
||||
|
||||
`expand`: function yielding a (cost of transition, transition, next node)
|
||||
triple for each node reachable from its argument.
|
||||
The `transition` element is application data; it is not touched, only
|
||||
returned as part of the best path.
|
||||
`estimate`: function(x) returning optimistic estimate of cost from node x
|
||||
to a goal. If not given, 0 will be used for estimates.
|
||||
`is_goal`: function(x) returning true iff x is a goal node
|
||||
|
||||
`notify`: If given, if is called at each step with three arguments:
|
||||
- current cost (with estimate). The cost to the next goal will not be
|
||||
smaller than this.
|
||||
- current node
|
||||
- open set cardinality: roughly, an estimate of the size of the
|
||||
boundary between "explored" and "unexplored" parts of node space
|
||||
- debug: stats that be useful for debugging or tuning (in this
|
||||
implementation, this is the open heap size)
|
||||
The number of calls to notify or the current cost can be useful as
|
||||
stopping criteria; the other values may help in tuning estimators.
|
||||
|
||||
`estimate_error_callback`: function handling cases where an estimate was
|
||||
detected not to be optimistic (as A* requires). The function is given a
|
||||
path (as would be returned by a_star, except it does not lead to a goal
|
||||
node). By default, nothing is done (indeed, an estimate that's not
|
||||
strictly optimistic can be useful, esp. if the optimal path is not
|
||||
required)
|
||||
"""
|
||||
# g: best cummulative cost (from initial node) found so far
|
||||
# h: optimistic estimate of cost to goal
|
||||
# f: g + h
|
||||
closed = set() # nodes we don't want to visit again
|
||||
est = estimate(initial) # estimate total cost
|
||||
opened = _HeapDict() # node -> (f, g, h)
|
||||
opened[initial] = (est, 0, est)
|
||||
came_from = {initial: None} # node -> (prev_node, came_from[prev_node])
|
||||
while True: # _HeapDict will raise StopIteration for us
|
||||
x, (f, g, h) = opened.pop()
|
||||
closed.add(x)
|
||||
|
||||
if notify is not None:
|
||||
notify(f, x, len(opened.dict), len(opened.heap))
|
||||
|
||||
if is_goal(x):
|
||||
yield _trace_path(came_from[x])
|
||||
|
||||
for cost, transition, y in expand(x):
|
||||
if y in closed:
|
||||
continue
|
||||
tentative_g = g + cost
|
||||
|
||||
old_f, old_g, h = opened.get(y, (None, None, None))
|
||||
|
||||
if old_f is None:
|
||||
h = estimate(y)
|
||||
elif tentative_g > old_g:
|
||||
continue
|
||||
|
||||
came_from[y] = ((tentative_g, transition, y), came_from[x])
|
||||
new_f = tentative_g + h
|
||||
|
||||
opened[y] = new_f, tentative_g, h
|
||||
|
||||
if estimate_error_callback is not None and new_f < f:
|
||||
estimate_error_callback(_trace_path(came_from[y]))
|
||||
|
||||
def _trace_path(cdr):
|
||||
"""Backtrace an A* result"""
|
||||
# Convert a lispy list to a pythony iterator
|
||||
while cdr:
|
||||
car, cdr = cdr
|
||||
yield car
|
||||
|
||||
class _HeapDict(object):
|
||||
"""A custom parallel heap/dict structure -- the best of both worlds.
|
||||
|
||||
This is NOT a general-purpose class; it only supports what a_star needs.
|
||||
"""
|
||||
# The dict has the definitive contents
|
||||
# The heap has (value, key) pairs. It may have some extra elements.
|
||||
def __init__(self):
|
||||
self.dict = {}
|
||||
self.heap = []
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
self.dict[key] = value
|
||||
heapq.heappush(self.heap, (value, key))
|
||||
|
||||
def __delitem__(self, key):
|
||||
del self.dict[key]
|
||||
|
||||
def get(self, key, default):
|
||||
"""Return value for key, or default if not found
|
||||
"""
|
||||
return self.dict.get(key, default)
|
||||
|
||||
def pop(self):
|
||||
"""Return (key, value) with the smallest value.
|
||||
|
||||
Raise StopIteration (!!) if empty
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
value, key = heapq.heappop(self.heap)
|
||||
if value is self.dict[key]:
|
||||
del self.dict[key]
|
||||
return key, value
|
||||
except KeyError:
|
||||
# deleted from dict = not here
|
||||
pass
|
||||
except IndexError:
|
||||
# nothing more to pop
|
||||
raise StopIteration
|
||||
|
||||
|
||||
### Example/test
|
||||
|
||||
|
||||
def test_example_knights():
|
||||
"""Test/example: the "knights" problem
|
||||
|
||||
Definition and another solution may be found at:
|
||||
http://brandon.sternefamily.net/posts/2005/02/a-star-algorithm-in-python/
|
||||
"""
|
||||
# Legal moves
|
||||
moves = { 1: [4, 7],
|
||||
2: [8, 10],
|
||||
3: [9],
|
||||
4: [1, 6, 10],
|
||||
5: [7],
|
||||
6: [4],
|
||||
7: [1, 5],
|
||||
8: [2, 9],
|
||||
9: [8, 3],
|
||||
10: [2, 4] }
|
||||
|
||||
class Positions(dict, Node):
|
||||
"""Node class representing positions as a dictionary.
|
||||
|
||||
Keys are unique piece names, values are (color, position) where color
|
||||
is True for white, False for black.
|
||||
"""
|
||||
def expand(self):
|
||||
for piece, (color, position) in self.items():
|
||||
for new_position in moves[position]:
|
||||
if new_position not in (p for c, p in self.values()):
|
||||
new_node = Positions(self)
|
||||
new_node.update({piece: (color, new_position)})
|
||||
yield 1, None, new_node
|
||||
|
||||
def estimate(self, goal):
|
||||
# Number of misplaced figures
|
||||
misplaced = 0
|
||||
for piece, (color, position) in self.items():
|
||||
if (color, position) not in goal.values():
|
||||
misplaced += 1
|
||||
return misplaced
|
||||
|
||||
def is_goal(self, goal):
|
||||
return self.estimate(goal) == 0
|
||||
|
||||
def __hash__(self):
|
||||
return hash(tuple(sorted(self.items())))
|
||||
|
||||
initial = Positions({
|
||||
'White 1': (True, 1),
|
||||
'white 2': (True, 6),
|
||||
'Black 1': (False, 5),
|
||||
'black 2': (False, 7),
|
||||
})
|
||||
|
||||
# Goal: colors should be switched
|
||||
goal = Positions((piece, (not color, position))
|
||||
for piece, (color, position) in initial.items())
|
||||
|
||||
def print_board(positions, linebreak='\n', extra=''):
|
||||
board = dict((position, piece)
|
||||
for piece, (color, position) in positions.items())
|
||||
for i in range(1, 11):
|
||||
# line breaks
|
||||
if i in (2, 6, 9):
|
||||
print linebreak,
|
||||
print board.get(i, '_')[0],
|
||||
print extra
|
||||
|
||||
def notify(cost, state, b, c):
|
||||
print 'Looking at state with cost %s:' % cost,
|
||||
print_board(state, '|', '(%s; %s; %s)' % (state.estimate(goal), b, c))
|
||||
|
||||
solution_path = list(initial.search(goal, notify=notify))
|
||||
|
||||
print 'Step', 0
|
||||
print_board(initial)
|
||||
for i, (cost, transition, positions) in enumerate(reversed(solution_path)):
|
||||
print 'Step', i + 1
|
||||
print_board(positions)
|
||||
|
||||
# Check solution is correct
|
||||
cost, transition, positions = solution_path[0]
|
||||
assert set(positions.values()) == set(goal.values())
|
||||
assert cost == 40
|
|
@ -4,6 +4,7 @@
|
|||
import sys
|
||||
import argparse
|
||||
import itertools
|
||||
import heapq
|
||||
from collections import defaultdict, namedtuple
|
||||
|
||||
from sqlalchemy.orm import aliased
|
||||
|
@ -12,9 +13,6 @@ from sqlalchemy.sql.expression import not_, and_, or_
|
|||
|
||||
from pokedex.db import connect, tables, util
|
||||
|
||||
from pokedex.util import querytimer
|
||||
from pokedex.util.astar import a_star, Node
|
||||
|
||||
###
|
||||
### Illegal Moveset exceptions
|
||||
###
|
||||
|
@ -44,7 +42,7 @@ def powerset(iterable):
|
|||
|
||||
class MovesetSearch(object):
|
||||
def __init__(self, session, pokemon, version, moves, level=100, costs=None,
|
||||
exclude_versions=(), exclude_pokemon=(), debug=False):
|
||||
exclude_versions=(), exclude_pokemon=(), debug_level=False):
|
||||
|
||||
self.generator = None
|
||||
|
||||
|
@ -53,7 +51,7 @@ class MovesetSearch(object):
|
|||
elif len(moves) > 4:
|
||||
raise NoMoves('Too many moves specified.')
|
||||
|
||||
self.debug = debug
|
||||
self.debug_level = debug_level
|
||||
|
||||
self.session = session
|
||||
|
||||
|
@ -78,7 +76,7 @@ class MovesetSearch(object):
|
|||
self.excluded_families = frozenset(p.evolution_chain_id
|
||||
for p in exclude_pokemon)
|
||||
|
||||
if debug:
|
||||
if debug_level > 1:
|
||||
print 'Specified moves:', [move.id for move in moves]
|
||||
|
||||
self.goal_pokemon = pokemon.id
|
||||
|
@ -124,9 +122,10 @@ class MovesetSearch(object):
|
|||
self.output_objects = dict()
|
||||
|
||||
kwargs = dict()
|
||||
if debug:
|
||||
if debug_level:
|
||||
self._astar_debug_notify_counter = 0
|
||||
kwargs['notify'] = self.astar_debug_notify
|
||||
kwargs['estimate_error_callback'] = self.astar_estimate_error
|
||||
self.generator = InitialNode(self).find_all_paths(**kwargs)
|
||||
|
||||
def load_version_groups(self, version, excluded):
|
||||
|
@ -151,7 +150,7 @@ class MovesetSearch(object):
|
|||
filtered_map[version] = (
|
||||
self.generation_id_by_version_group[version])
|
||||
self.generation_id_by_version_group = filtered_map
|
||||
if self.debug:
|
||||
if self.debug_level > 1:
|
||||
print 'Excluded version groups:', excluded
|
||||
print 'Trade cost table:'
|
||||
print '%03s' % '',
|
||||
|
@ -178,7 +177,7 @@ class MovesetSearch(object):
|
|||
non_egg_moves is a set of moves that don't require breeding
|
||||
Otherwise, these are empty sets.
|
||||
"""
|
||||
if self.debug:
|
||||
if self.debug_level > 1:
|
||||
print 'Loading pokemon moves, %s %s' % (evolution_chain, selection)
|
||||
query = self.session.query(
|
||||
tables.PokemonMove.pokemon_id,
|
||||
|
@ -252,10 +251,10 @@ class MovesetSearch(object):
|
|||
continue
|
||||
cost = 1
|
||||
self.pokemon_moves[pokemon][vg][move][method].append((level, cost))
|
||||
if self.debug and selection == 'family':
|
||||
if self.debug_level > 1 and selection == 'family':
|
||||
print 'Easy moves:', sorted(easy_moves)
|
||||
print 'Non-egg moves:', sorted(non_egg_moves)
|
||||
if self.debug:
|
||||
if self.debug_level > 1:
|
||||
print 'Smeargle families:', sorted(self.smeargle_families)
|
||||
return easy_moves, non_egg_moves
|
||||
|
||||
|
@ -364,7 +363,7 @@ class MovesetSearch(object):
|
|||
if move:
|
||||
self.evolution_moves[self.evolution_chains[child]] = move
|
||||
|
||||
if self.debug:
|
||||
if self.debug_level > 1:
|
||||
print 'Loaded %s pokemon: %s evo; %s families: %s breedable' % (
|
||||
len(self.evolution_chains),
|
||||
len(self.pokemon_by_evolution_chain),
|
||||
|
@ -396,7 +395,7 @@ class MovesetSearch(object):
|
|||
)
|
||||
self.move_generations = dict(query)
|
||||
|
||||
if self.debug:
|
||||
if self.debug_level > 1:
|
||||
print 'Loaded %s moves' % len(self.move_generations)
|
||||
|
||||
def construct_breed_graph(self):
|
||||
|
@ -443,7 +442,7 @@ class MovesetSearch(object):
|
|||
if len(groups) >= 2:
|
||||
eg2_movepools[groups].update(pool)
|
||||
|
||||
if self.debug:
|
||||
if self.debug_level > 1:
|
||||
print 'Egg group summary:'
|
||||
for group in sorted(all_groups):
|
||||
print "%2s can pass: %s" % (group, sorted(eg1_movepools[group]))
|
||||
|
@ -496,7 +495,7 @@ class MovesetSearch(object):
|
|||
breeds_required[group][frozenset(moves)] = 1
|
||||
self.breeds_required = breeds_required
|
||||
|
||||
if self.debug:
|
||||
if self.debug_level > 1:
|
||||
for group, movesetlist in breeds_required.items():
|
||||
print 'From egg group', group
|
||||
for moveset, cost in movesetlist.items():
|
||||
|
@ -530,7 +529,7 @@ class MovesetSearch(object):
|
|||
last_moves = moves
|
||||
last_gen = gen
|
||||
|
||||
if self.debug:
|
||||
if self.debug_level > 1:
|
||||
print 'Deduplicated %s version groups' % counter
|
||||
|
||||
def astar_debug_notify(self, cost, node, setsize, heapsize):
|
||||
|
@ -538,8 +537,13 @@ class MovesetSearch(object):
|
|||
if counter % 100 == 0:
|
||||
print 'A* iteration %s, cost %s; remaining: %s (%s) \r' % (
|
||||
counter, cost, setsize, heapsize),
|
||||
sys.stdout.flush()
|
||||
self._astar_debug_notify_counter += 1
|
||||
|
||||
def astar_estimate_error(self, result):
|
||||
print '**warning: bad A* estimate**'
|
||||
print_result(result)
|
||||
|
||||
def __iter__(self):
|
||||
return self.generator
|
||||
|
||||
|
@ -585,7 +589,7 @@ default_costs = {
|
|||
# For technical reasons, 'sketch' is also used for learning Sketch and
|
||||
# by normal means, if it isn't included in the target moveset.
|
||||
# So the actual cost of a sketched move will be double this number.
|
||||
'sketch': 100, # Cheap. Exclude Smeargle if you think it's too cheap.
|
||||
'sketch': 1, # Cheap. Exclude Smeargle if you think it's too cheap.
|
||||
|
||||
# Gimmick moves – we need to use this method to learn the move anyway,
|
||||
# so make a big-ish dent in the score if missing
|
||||
|
@ -604,7 +608,7 @@ default_costs = {
|
|||
'evolution-delayed': 50, # *in addition* to evolution. Who wants to mash B on every level.
|
||||
'breed': 400, # Breeding's a pain.
|
||||
'trade': 200, # Trading's a pain, but not as much as breeding.
|
||||
'transfer': 200, # *in addition* to trade. For one-way cross-generation transfers
|
||||
'transfer': 150, # *in addition* to trade. Keep it below 'trade'.
|
||||
'forget': 300, # Deleting a move. (Not needed unless deleting an evolution move.)
|
||||
'relearn': 150, # Also a pain, though not as big as breeding.
|
||||
'per-level': 1, # Prefer less grinding. This is for all lv-ups but the final “grow”
|
||||
|
@ -620,6 +624,215 @@ default_costs = {
|
|||
'breed-penalty': 100,
|
||||
}
|
||||
|
||||
###
|
||||
### A*
|
||||
###
|
||||
|
||||
class Node(object):
|
||||
"""Node for the A* search algorithm.
|
||||
|
||||
To get started, implement the `expand` method and call `search`.
|
||||
|
||||
N.B. Node objects must be hashable.
|
||||
"""
|
||||
|
||||
def expand(self):
|
||||
"""Return a list of (costs, transition, next_node) for next states
|
||||
|
||||
"Next states" are those reachable from this node.
|
||||
|
||||
May return any finite iterable.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def estimate(self, goal):
|
||||
"""Return an *optimistic* estimate of the cost to the given goal node.
|
||||
|
||||
If there are multiple goal states, return the lowest estimate among all
|
||||
of them.
|
||||
"""
|
||||
return 0
|
||||
|
||||
def is_goal(self, goal):
|
||||
"""Return true iff this is a goal node.
|
||||
"""
|
||||
return self == goal
|
||||
|
||||
def find_path(self, goal=None, **kwargs):
|
||||
"""Return the best path to the goal
|
||||
|
||||
Returns an iterator of (cost, transition, node) triples, in reverse
|
||||
order (i.e. the first element will have the total cost and goal node).
|
||||
|
||||
If `goal` will be passed to the `estimate` and `is_goal` methods.
|
||||
|
||||
See a_star for the advanced keyword arguments, `notify` and
|
||||
`estimate_error_callback`.
|
||||
"""
|
||||
paths = self.find_all_paths(goal=goal, **kwargs)
|
||||
try:
|
||||
return paths.next()
|
||||
except StopIteration:
|
||||
return None
|
||||
|
||||
def find_all_paths(self, goal=None, **kwargs):
|
||||
"""Yield the best path to each goal
|
||||
|
||||
Returns an iterator of paths. See the `search` method for how paths
|
||||
look.
|
||||
|
||||
Giving the `goal` argument will cause it to search for that goal,
|
||||
instead of consulting the `is_goal` method.
|
||||
This means that if you wish to find more than one path, you must not
|
||||
pass a `goal` to this method, and instead reimplament `is_goal`.
|
||||
|
||||
See a_star for the advanced keyword arguments, `notify` and
|
||||
`estimate_error_callback`.
|
||||
"""
|
||||
return a_star(
|
||||
initial=self,
|
||||
expand=lambda s: s.expand(),
|
||||
estimate=lambda s: s.estimate(goal),
|
||||
is_goal=lambda s: s.is_goal(goal),
|
||||
**kwargs)
|
||||
|
||||
def a_star(initial, expand, is_goal, estimate=lambda x: 0, notify=None,
|
||||
estimate_error_callback=None):
|
||||
"""A* search algorithm for a consistent heuristic
|
||||
|
||||
General background: http://en.wikipedia.org/wiki/A*_search_algorithm
|
||||
|
||||
This algorithm will work in large or infinite search spaces.
|
||||
|
||||
This version of the algorithm is modified for multiple possible goals:
|
||||
it does not end when it reaches a goal. Rather, it yields the best path
|
||||
for each goal.
|
||||
(Exhausting the iterator is of course not recommended for large search
|
||||
spaces.)
|
||||
|
||||
Returns an iterable of paths, where each path is an iterable of
|
||||
(cummulative cost, transition, node) triples representing the path to
|
||||
the goal. The transition is the one leading to the corresponding node.
|
||||
The path is in reverse order, thus its first element will contain the
|
||||
total cost and the goal node.
|
||||
The initial node is not included in the returned path.
|
||||
|
||||
Arguments:
|
||||
|
||||
`initial`: the initial node
|
||||
|
||||
`expand`: function yielding a (cost of transition, transition, next node)
|
||||
triple for each node reachable from its argument.
|
||||
The `transition` element is application data; it is not touched, only
|
||||
returned as part of the best path.
|
||||
`estimate`: function(x) returning optimistic estimate of cost from node x
|
||||
to a goal. If not given, 0 will be used for estimates.
|
||||
`is_goal`: function(x) returning true iff x is a goal node
|
||||
|
||||
`notify`: If given, if is called at each step with three arguments:
|
||||
- current cost (with estimate). The cost to the next goal will not be
|
||||
smaller than this.
|
||||
- current node
|
||||
- open set cardinality: roughly, an estimate of the size of the
|
||||
boundary between "explored" and "unexplored" parts of node space
|
||||
- debug: stats that be useful for debugging or tuning (in this
|
||||
implementation, this is the open heap size)
|
||||
The number of calls to notify or the current cost can be useful as
|
||||
stopping criteria; the other values may help in tuning estimators.
|
||||
|
||||
`estimate_error_callback`: function handling cases where an estimate was
|
||||
detected not to be optimistic (as A* requires). The function is given a
|
||||
path (as would be returned by a_star, except it does not lead to a goal
|
||||
node). By default, nothing is done (indeed, an estimate that's not
|
||||
strictly optimistic can be useful, esp. if the optimal path is not
|
||||
required)
|
||||
"""
|
||||
# g: best cummulative cost (from initial node) found so far
|
||||
# h: optimistic estimate of cost to goal
|
||||
# f: g + h
|
||||
closed = set() # nodes we don't want to visit again
|
||||
est = estimate(initial) # estimate total cost
|
||||
opened = _HeapDict() # node -> (f, g, h)
|
||||
opened[initial] = (est, 0, est)
|
||||
came_from = {initial: None} # node -> (prev_node, came_from[prev_node])
|
||||
while True: # _HeapDict will raise StopIteration for us
|
||||
x, (f, g, h) = opened.pop()
|
||||
closed.add(x)
|
||||
|
||||
if notify is not None:
|
||||
notify(f, x, len(opened.dict), len(opened.heap))
|
||||
|
||||
if is_goal(x):
|
||||
yield _trace_path(came_from[x])
|
||||
|
||||
for cost, transition, y in expand(x):
|
||||
if y in closed:
|
||||
continue
|
||||
tentative_g = g + cost
|
||||
|
||||
old_f, old_g, h = opened.get(y, (None, None, None))
|
||||
|
||||
if old_f is None:
|
||||
h = estimate(y)
|
||||
elif tentative_g > old_g:
|
||||
continue
|
||||
|
||||
came_from[y] = ((tentative_g, transition, y), came_from[x])
|
||||
new_f = tentative_g + h
|
||||
|
||||
opened[y] = new_f, tentative_g, h
|
||||
|
||||
if estimate_error_callback is not None and new_f < f:
|
||||
estimate_error_callback(_trace_path(came_from[y]))
|
||||
|
||||
def _trace_path(cdr):
|
||||
"""Backtrace an A* result"""
|
||||
# Convert a lispy list to a pythony iterator
|
||||
while cdr:
|
||||
car, cdr = cdr
|
||||
yield car
|
||||
|
||||
class _HeapDict(object):
|
||||
"""A custom parallel heap/dict structure -- the best of both worlds.
|
||||
|
||||
This is NOT a general-purpose class; it only supports what a_star needs.
|
||||
"""
|
||||
# The dict has the definitive contents
|
||||
# The heap has (value, key) pairs. It may have some extra elements.
|
||||
def __init__(self):
|
||||
self.dict = {}
|
||||
self.heap = []
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
self.dict[key] = value
|
||||
heapq.heappush(self.heap, (value, key))
|
||||
|
||||
def __delitem__(self, key):
|
||||
del self.dict[key]
|
||||
|
||||
def get(self, key, default):
|
||||
"""Return value for key, or default if not found
|
||||
"""
|
||||
return self.dict.get(key, default)
|
||||
|
||||
def pop(self):
|
||||
"""Return (key, value) with the smallest value.
|
||||
|
||||
Raise StopIteration (!!) if empty
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
value, key = heapq.heappop(self.heap)
|
||||
if value is self.dict[key]:
|
||||
del self.dict[key]
|
||||
return key, value
|
||||
except KeyError:
|
||||
# deleted from dict = not here
|
||||
pass
|
||||
except IndexError:
|
||||
# nothing more to pop
|
||||
raise StopIteration
|
||||
|
||||
###
|
||||
### Result objects
|
||||
###
|
||||
|
@ -828,8 +1041,9 @@ class PokemonNode(Node, Facade, namedtuple('PokemonNode',
|
|||
def expand_forget(self):
|
||||
cost = self.search.costs['forget']
|
||||
for move in self.moves_:
|
||||
yield cost, ForgetAction(self.search, move), self._replace(
|
||||
moves_=self.moves_.difference([move]), new_level=False)
|
||||
if move not in self.search.goal_moves:
|
||||
yield cost, ForgetAction(self.search, move), self._replace(
|
||||
moves_=self.moves_.difference([move]), new_level=False)
|
||||
|
||||
def expand_trade(self):
|
||||
search = self.search
|
||||
|
@ -923,7 +1137,7 @@ class PokemonNode(Node, Facade, namedtuple('PokemonNode',
|
|||
moves = self.moves_
|
||||
for sketch in moves:
|
||||
if sketch == self.search.sketch:
|
||||
for sketched in self.search.goal_moves:
|
||||
for sketched in sorted(self.search.goal_moves):
|
||||
if sketched in self.search.unsketchable:
|
||||
continue
|
||||
if sketched not in moves:
|
||||
|
@ -936,6 +1150,26 @@ class PokemonNode(Node, Facade, namedtuple('PokemonNode',
|
|||
new_level=False, moves_=frozenset(moves))
|
||||
return
|
||||
|
||||
def estimate(self, g):
|
||||
# Given good estimates, A* finds solutions much faster.
|
||||
# However, here it seems we either have easy movesets, which
|
||||
# get found pretty easily by themselves, or hard ones, where
|
||||
# heuristics don't help too much, or impossible ones where they
|
||||
# don't matter at all.
|
||||
# So, keep the computations here to a minimum.
|
||||
search = self.search
|
||||
trade_cost = search.trade_cost(self.version_group_,
|
||||
search.goal_version_group)
|
||||
if trade_cost is None:
|
||||
trade_cost = search.costs['trade'] * 2
|
||||
return trade_cost
|
||||
evo_chain = search.evolution_chains[self.pokemon_]
|
||||
if evo_chain == search.goal_evolution_chain:
|
||||
breed_cost = 0
|
||||
else:
|
||||
breed_cost = search.costs['breed']
|
||||
return trade_cost + breed_cost
|
||||
|
||||
class BaseBreedNode(Node):
|
||||
"""Breed node
|
||||
This serves to prevent duplicate breeds, by storing only the needed info
|
||||
|
@ -955,8 +1189,8 @@ class BaseBreedNode(Node):
|
|||
continue
|
||||
if len(bred_moves) < 4:
|
||||
for move, methods in moves.items():
|
||||
if 'light-ball-pichu' in methods:
|
||||
bred_moves.add(move)
|
||||
if 'light-ball-egg' in methods:
|
||||
bred_moves = bred_moves.union([move])
|
||||
cost = search.costs['per-hatch-counter'] * search.hatch_counters[baby]
|
||||
yield 0, BreedAction(self.search, baby, bred_moves), PokemonNode(
|
||||
search=self.search, pokemon_=baby, level=hatch_level,
|
||||
|
@ -995,11 +1229,30 @@ class GoalNode(PokemonNode):
|
|||
|
||||
def is_goal(self, g):
|
||||
return True
|
||||
|
||||
###
|
||||
### CLI interface
|
||||
###
|
||||
|
||||
def print_result(result, moves=()):
|
||||
template = u"{cost:4} {est:4} {action:45.45}{long:1} {pokemon:10}{level:>3}{nl:1}{versions:2} {moves}"
|
||||
print template.format(cost='Cost', est='Est.', action='Action', pokemon='Pokemon',
|
||||
long='', level='Lv.', nl='V', versions='er',
|
||||
moves=''.join(m.name[0].lower() for m in moves))
|
||||
for cost, action, node in reversed(list(result)):
|
||||
if action:
|
||||
print template.format(
|
||||
cost=cost,
|
||||
action=action,
|
||||
long='>' if (len(unicode(action)) > 45) else '',
|
||||
est=node.estimate(None),
|
||||
pokemon=node.pokemon.name,
|
||||
nl='.' if node.new_level else ' ',
|
||||
level=node.level,
|
||||
versions=''.join(v.name[0] for v in node.versions),
|
||||
moves=''.join('.' if m in node.moves else ' ' for m in moves) +
|
||||
''.join(m.name[0].lower() for m in node.moves if m not in moves),
|
||||
)
|
||||
|
||||
def main(argv):
|
||||
parser = argparse.ArgumentParser(description=
|
||||
'Find out if the specified moveset is valid, and provide a suggestion '
|
||||
|
@ -1039,7 +1292,7 @@ def main(argv):
|
|||
if args.debug:
|
||||
print 'Connecting'
|
||||
|
||||
session = connect(engine_args={'echo': args.debug > 1})
|
||||
session = connect(engine_args={'echo': args.debug > 2})
|
||||
|
||||
if args.debug:
|
||||
print 'Parsing arguments'
|
||||
|
@ -1068,37 +1321,20 @@ def main(argv):
|
|||
try:
|
||||
search = MovesetSearch(session, pokemon, version, moves, args.level,
|
||||
exclude_versions=excl_versions, exclude_pokemon=excl_pokemon,
|
||||
debug=args.debug)
|
||||
debug_level=args.debug)
|
||||
except IllegalMoveCombination, e:
|
||||
print 'Error:', e
|
||||
else:
|
||||
if args.debug:
|
||||
print 'Setup done'
|
||||
|
||||
template = u"{cost:4} {action:50.50}{long:1} {pokemon:10}{level:>3}{nl:1}{versions:2} {moves}"
|
||||
for result in search:
|
||||
if args.debug and search.output_objects:
|
||||
print '**warning: search looked up output objects**'
|
||||
no_results = False
|
||||
print '-' * 79
|
||||
if no_results:
|
||||
if search.output_objects:
|
||||
print '**warning: search looked up output objects**'
|
||||
no_results = False
|
||||
print template.format(cost='Cost', action='Action', pokemon='Pokemon',
|
||||
long='',level='Lv.', nl='V', versions='er',
|
||||
moves=''.join(m.name[0].lower() for m in moves))
|
||||
for cost, action, node in reversed(list(result)):
|
||||
if action:
|
||||
print template.format(
|
||||
cost=cost,
|
||||
action=action,
|
||||
long='>' if len(str(action)) > 50 else '',
|
||||
pokemon=node.pokemon.name,
|
||||
nl='.' if node.new_level else ' ',
|
||||
level=node.level,
|
||||
versions=''.join(v.name[0] for v in node.versions),
|
||||
moves=''.join('.' if m in node.moves else ' ' for m in moves) +
|
||||
''.join(m.name[0].lower() for m in node.moves if m not in moves),
|
||||
)
|
||||
# XXX: Support more results
|
||||
print_result(result, moves=moves)
|
||||
# XXX: Support more than one result
|
||||
break
|
||||
|
||||
if args.debug:
|
||||
|
|
Loading…
Add table
Reference in a new issue